Laporan Akhir 2 Praktikum Modul 2





Laporan Akhir

Percobaan 7
Led RGB, Buzzer, Soil Moisture, & Push Button

1. Prosedur [kembali]
  1. Hubungkan Komponen ke STM32:

    • Sambungkan potensiometer ke pin ADC.

    • Hubungkan LED RGB ke pin digital output melalui resistor.

    • Pasang buzzer ke pin digital output (jika perlu, gunakan resistor).

  2. Sambungkan STM32 ke Laptop:

    • Gunakan kabel USB-TTL atau ST-Link.

    • Pastikan driver STM32 telah terinstal.

  3. Buka STM32CubeIDE:

    • Jalankan STM32CubeIDE dan buat proyek baru untuk STM32F103C8.

  4. Masukkan Kode Program:

    • Tulis atau impor kode program.

    • Konfigurasikan pin dan periferal (GPIO, ADC, Timer) jika diperlukan.

  5. Upload Program ke STM32:

    • Build dan upload program ke board.

    • Jalankan program dan amati hasilnya pada komponen.

  6. Running simulasi nya

2. Hardware dan Diagram Blok [kembali]

Hardware 
  • STM32F103C8

  • Potensiometer





  • Breadboard



  • Jumper male to male



  • Buzzer



  • Soil Moisture Sensor





  • Push Button


Diagram Blok :



3. Rangkaian Simulasi dan Prinsip Kerja [kembali]

- Rangkaian Simulasi:
 


- Prinsip Kerja : 

Pada percobaan ini terdiri dari sensor kelembapan tanah, LED RGB, buzzer, dan push button yang dikendalikan oleh mikrokontroler. Soil Moisture sensor dan Push button berfungsi sebagai input. sedangkan LED RGB dan Buzzer sebagai output. Saat sistem dinyalakan, seluruh komponen diinisialisasi terlebih dahulu agar siap digunakan. Sensor kelembapan tanah kemudian mulai membaca kadar air yang ada di dalam tanah dan mengklasifikasikannya ke dalam tiga kondisi utama: tanah normal, tanah kering, dan tanah basah. Hasil pembacaan ini menjadi dasar untuk memberikan respon dari LED RGB dan buzzer.

Jika sensor mendeteksi tanah dalam kondisi normal, maka LED RGB akan menyala dengan warna biru sebagai tanda bahwa kelembapan tanah berada dalam kisaran yang sesuai, dan buzzer tetap mati. Apabila tanah terdeteksi kering, LED RGB akan menyala hijau, juga tanpa mengaktifkan buzzer, sebagai peringatan bahwa tanah mulai kekurangan air. Namun, bila sensor mendeteksi tanah dalam kondisi terlalu basah, maka LED RGB akan menyala merah dan buzzer akan aktif sebagai bentuk peringatan bahwa kondisi ini berpotensi membahayakan tanaman karena kelebihan air.

Pengguna dapat berinteraksi dengan sistem melalui push button yang berfungsi untuk mematikan buzzer saat tanah dalam kondisi basah. Jika buzzer menyala dan pengguna menekan tombol, maka buzzer akan langsung mati. Namun, jika tombol tidak ditekan, maka buzzer akan terus menyala hingga tindakan dilakukan. 

4. Flowchart dan Listing Program [kembali]
  • Flowchart



  • Listing Program

/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2025 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"


#include "stm32f1xx_hal.h"

/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */


/* USER CODE END Includes */


/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */


/* USER CODE END PTD */


/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */


/* USER CODE END PD */


/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */


/* USER CODE END PM */


/* Private variables ---------------------------------------------------------*/

ADC_HandleTypeDef hadc1;


TIM_HandleTypeDef htim2;


uint8_t sound_pattern = 0;


/* USER CODE BEGIN PV */

#define LED_RED_PIN GPIO_PIN_12

#define LED_GREEN_PIN GPIO_PIN_13

#define LED_BLUE_PIN GPIO_PIN_14

#define LED_PORT GPIOB

#define BUTTON_PIN GPIO_PIN_0

#define BUTTON_PORT GPIOB

/* USER CODE END PV */

#define BUZZER_PIN GPIO_PIN_2

#define ADC_THRESH_HIGH 3000

#define ADC_THRESH_MID 1500

const uint32_t pwm_periods[] = {1000, 50000, 719999};

/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

static void MX_ADC1_Init(void);

static void MX_TIM2_Init(void);

/* USER CODE BEGIN PFP */

void update_leds_and_buzzer(uint32_t adc_val, uint8_t btn_state);

void change_sound_pattern(void);

void Error_Handler(void);

/* USER CODE END PFP */


/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */


/* USER CODE END 0 */


/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{


/* USER CODE BEGIN 1 */


/* USER CODE END 1 */


/* MCU Configuration--------------------------------------------------------*/


/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();


/* USER CODE BEGIN Init */


/* USER CODE END Init */


/* Configure the system clock */

SystemClock_Config();


/* USER CODE BEGIN SysInit */


/* USER CODE END SysInit */


/* Initialize all configured peripherals */

MX_GPIO_Init();

MX_ADC1_Init();

MX_TIM2_Init();

/* USER CODE BEGIN 2 */

HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);

HAL_ADC_Start(&hadc1);

/* USER CODE END 2 */


/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

static uint32_t last_adc_tick = 0;

static uint32_t last_sound_change = 0;

uint8_t button_state = HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN);

if (HAL_GetTick() - last_adc_tick > 200) {

last_adc_tick = HAL_GetTick();

HAL_ADC_Start(&hadc1);

if (HAL_ADC_PollForConversion(&hadc1, 10) == HAL_OK) {

update_leds_and_buzzer(HAL_ADC_GetValue(&hadc1), button_state);

}

}

if (button_state == GPIO_PIN_RESET && (HAL_ADC_GetValue(&hadc1) <

ADC_THRESH_MID)) {

if (HAL_GetTick() - last_sound_change > 1000) {

last_sound_change = HAL_GetTick();

change_sound_pattern();

}

}

HAL_Delay(10);


/* USER CODE END WHILE */


/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

}


void update_leds_and_buzzer(uint32_t adc_val, uint8_t btn_state) {

HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN | LED_GREEN_PIN |

LED_BLUE_PIN, GPIO_PIN_RESET);

if (adc_val >= ADC_THRESH_HIGH) {

HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN, GPIO_PIN_SET);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);

}

else if (adc_val >= ADC_THRESH_MID) {

HAL_GPIO_WritePin(LED_PORT, LED_BLUE_PIN, GPIO_PIN_SET);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);

}

else {

HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN, GPIO_PIN_SET);

if (btn_state == GPIO_PIN_RESET) {

__HAL_TIM_SET_AUTORELOAD(&htim2, pwm_periods[sound_pattern]);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3,

pwm_periods[sound_pattern] / 2);

} else {

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);

}

}

}

void change_sound_pattern(void) {

sound_pattern = (sound_pattern + 1) % 3;

if (HAL_ADC_GetValue(&hadc1) < ADC_THRESH_MID &&

HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) == GPIO_PIN_SET) {

__HAL_TIM_SET_AUTORELOAD(&htim2, pwm_periods[sound_pattern]);

__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3,

pwm_periods[sound_pattern] / 2);

}

}

/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};


/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}


/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;


if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();

}

PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;

PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;

if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)

{

Error_Handler();

}

}


/**

* @brief ADC1 Initialization Function

* @param None

* @retval None

*/

static void MX_ADC1_Init(void)

{


/* USER CODE BEGIN ADC1_Init 0 */


/* USER CODE END ADC1_Init 0 */


ADC_ChannelConfTypeDef sConfig = {0};


/* USER CODE BEGIN ADC1_Init 1 */


/* USER CODE END ADC1_Init 1 */


/** Common config

*/

hadc1.Instance = ADC1;

hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

hadc1.Init.ContinuousConvMode = DISABLE;

hadc1.Init.DiscontinuousConvMode = DISABLE;

hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;

hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

hadc1.Init.NbrOfConversion = 1;

if (HAL_ADC_Init(&hadc1) != HAL_OK)

{

Error_Handler();

}


/** Configure Regular Channel

*/

sConfig.Channel = ADC_CHANNEL_0;

sConfig.Rank = ADC_REGULAR_RANK_1;

sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;

if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN ADC1_Init 2 */


/* USER CODE END ADC1_Init 2 */


}


/**

* @brief TIM2 Initialization Function

* @param None

* @retval None

*/

static void MX_TIM2_Init(void)

{


/* USER CODE BEGIN TIM2_Init 0 */


/* USER CODE END TIM2_Init 0 */


TIM_MasterConfigTypeDef sMasterConfig = {0};

TIM_OC_InitTypeDef sConfigOC = {0};


/* USER CODE BEGIN TIM2_Init 1 */


/* USER CODE END TIM2_Init 1 */

htim2.Instance = TIM2;

htim2.Init.Prescaler = 0;

htim2.Init.CounterMode = TIM_COUNTERMODE_UP;

htim2.Init.Period = 65535;

htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;

if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)

{

Error_Handler();

}

sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;

if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)

{

Error_Handler();

}

sConfigOC.OCMode = TIM_OCMODE_PWM1;

sConfigOC.Pulse = 0;

sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)

{

Error_Handler();

}

/* USER CODE BEGIN TIM2_Init 2 */


/* USER CODE END TIM2_Init 2 */

HAL_TIM_MspPostInit(&htim2);


}


/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */


/* USER CODE END MX_GPIO_Init_1 */


/* GPIO Ports Clock Enable */

__HAL_RCC_GPIOD_CLK_ENABLE();

__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();


/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOB, LED_RED_Pin|LED_GREEN_Pin|LED_BLUE_Pin, GPIO_PIN_RESET);


/*Configure GPIO pin : BUTTON_Pin */

GPIO_InitStruct.Pin = BUTTON_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(BUTTON_GPIO_Port, &GPIO_InitStruct);


/*Configure GPIO pins : LED_RED_Pin LED_GREEN_Pin LED_BLUE_Pin */

GPIO_InitStruct.Pin = LED_RED_Pin|LED_GREEN_Pin|LED_BLUE_Pin;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);


/* USER CODE BEGIN MX_GPIO_Init_2 */


/* USER CODE END MX_GPIO_Init_2 */

}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}


#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */


5. Video Demo [kembali]



6. Analisa [kembali]






7. Download file [kembali]


Komentar

Postingan populer dari blog ini

Modul 2 Praktikum Sistem Digital

Modul 1 (GPIO) Praktikum Mikroprosesor dan Mikrokontroller

Modul 1 Praktikum Sistem Digital